Hybrid AI for predictive maintenance of wind turbines

Signe Riemer-Sørensen, SINTEF
Predictive maintenance

Current condition
Future condition
Effect of initiatives
Industrial reality is complicated

- Complex systems
- Limited standardization
- Data challenges
- Safety critical systems
Complexity of physical/knowledge base

Use of data

Machine learning
Data-driven methods

Hybrid analytics
Combining data-driven and model-based methods

Analytical model
Knowledge/physics-based

High-fidelity simulation
Complex physical model

\[E = mc^2 \]

\[F(a) = ma \]
SFI NorwAI

- AI in society
- Thrustworthy AI
- AI for language and personalization

- AI for streaming data
- Hybrid AI analytics
- Data and platforms for AI

ACADEMIC AND RESEARCH PARTNERS
- NTNU
- SINTEF
- NRE
- UiO
- Universitetet i Oslo
- University of Stavanger

INDUSTRIAL, ACADEMIC AND RESEARCH NETWORKS
- NAINE
- AI4EU
- AI DIH network
- DigitalNorway

INDUSTRIAL PARTNERS
- DNB
- SpareBank1 SMN
- Telenor
- Cognite
- Schibsted
- NRK
- Kongsberg
- DNV
- Retriever
- TrønderEnergi
Use cases for Hybrid AI analytics

Virtual flow metering

- **Kongsberg**: Simulated data of AkerBP system
- **Cognite**: Sensor data from AkerBP system

Predictive maintenance for wind turbines

- **DNV-GL**: Simulators of turbines and wind parks
- **TrønderEnergi**: Real data from Skomakerfjellet

Teknologi for et bedre samfunn
Fast surrogate model

Rapid damage equivalent load estimates
Non-linear interpolations between simulations
Uncertainty (interpolation)
Determining fatigue

I. Directly with vibration sensors
II. Without vibration sensors you need simulations
III. Future wear?
Simulate data specific conditions

Data
• Sensor data from turbines

Fatigue

Teknologi for et bedre samfunn
Shortcut with learning surrogates

Data
- Sensor data from turbines

Inference
- Data to parameters

Parameters
- Input parameters for simulation
- With uncertainties

Simulator
- Run with parameters

Simulation
- Condition specific

Fatigue
Shortcut with learning surrogates

- Pros:
 - Trained on pre-run simulations
 - Some frameworks (e.g. Gaussian processes) can give uncertainties

- Cons:
 - No individualisation
 - Requires many simulations
 - Only covers parameter space spanned by simulations
 - No relation to data
Shortcut with learning surrogates

1. **Data**
 - Sensor data from turbines

2. **Inference**
 - Data to parameters

3. **Parameters**
 - Input parameters for simulation
 - With uncertainties

4. **Simulator**
 - Run with parameters

5. **Simulation**
 - Condition specific

6. **Fatigue**

Teknologi for et bedre samfunn
Shortcut with learning surrogates

Data
- Sensor data from turbines

Inference
- Data to parameters

Parameters
- Input parameters for simulation
- With uncertainties

Pros:
- Allows for data-defined simulations
- Parameters can be determined with uncertainties

Cons:
- Requires many simulations to learn initially
- Only covers parameter space spanned by simulations
- Cannot resolve parameter degeneracies

Teknologi for et bedre samfunn
Shortcut with learning surrogates

Data
• Sensor data from turbines

Inference
• Data to parameters

Parameters
• Input parameters for simulation
• With uncertainties

Simulator
• Run with parameters

Simulation
• Condition specific

Fatigue

Teknologi for et bedre samfunn
Summary

I. Large learning potential
II. We need physics
III. Data is crucial
IV. NorwAI work in progress:
 I. Simulation parameter estimation from wind turbine data
 II. Surrogate simulation model
Teknologi for et bedre samfunn